APPENDIX 15

Pager Power Report

Navigation Aids Impact Assessment

Navigation Aids Impact Assessment

Malachy Walsh and Partners

Carrownagowan Wind Farm

November, 2019

PLANNING SOLUTIONS FOR:

- Solar
- Telecoms Buildings
- Railways
- Defence
 Buildings
 - Wind
- Radar

Airports

Mitigation

www.pagerpower.com

ADMINISTRATION PAGE

Job Reference:	9451B
Date:	November, 2019
Prepared for:	Malachy Walsh and Partners
Author:	Mike Watson
Telephone:	+44 (0)1787 319001
Email:	mike@pagerpower.com

Reviewer	Andrea Mariano
Date:	February, 2019
Telephone:	+44 (0)1787 319001
Email:	andrea@pagerpower.com

Issue	Date	Detail of Changes
1	8 February, 2019	Initial issue
2	22 November, 2019	Updated layout
3	2 December, 2019	Meteorological mast added

Confidential: The contents of this document may not be disclosed to others without permission. Copyright © Pager Power Limited 2019

Pager Power Limited, Stour Valley Business Centre, Alexandra Road, Sudbury, CO10 7GB, United Kingdom

T: +44 (0)1787 319001 E: info@pagerpower.com W: <u>https://www.pagerpower.com/</u>

1 KEY FINDINGS

1.1 Background

Malachy Walsh and Partners are carrying out an environmental impact assessment for a proposed wind farm at Carrownagowan which lies approximately 25 kilometres north east of Shannon Airport in the west of Ireland. Aircraft flying into Shannon will fly just north of the proposed development.

1.2 Shannon Airport

Shannon Airport has a range of radio transmitters which pilots use to navigate - one of these systems being an Instrument Landing System (ILS). The proposed wind farm will not affect aircraft using the ILS normally – however the Irish Aviation Authority (IAA) has raised concerns that the wind farm could affect periodic test flights that are used to calibrate and check the ILS.

The diagram below shows the relative locations of the turbines; the meteorological mast; the runway and its extended centre line. The marks on the extended centre line have a spacing of 1 nautical mile.

Figure 1 Chart showing extended centre line and turbines

1.3 Test Flights

These test flights fly a range of trajectories which either fly towards the airport or in an arc, or orbit, centred on the runway threshold¹. The IAA has provided a schedule of ILS checks and their associated flight trajectories.

1.4 Assessment

The aircraft altitude (or height) has no impact on the horizontal separation between wind turbine and aircraft. Similarly the wind turbine altitude (or height) has no impact on horizontal separation.

In this analysis, only the horizontal clearance between aircraft and the turbines has been considered. This means that the results of this analysis apply for aircraft flying at any altitude profile on the specified horizontal trajectory. Similarly, the results apply for any turbine height.

A software tool has been used to calculate the minimum horizontal separation between each specific (horizontally defined) trajectory and the nearest wind turbine².

1.5 Trajectories beyond 2 Nautical Miles³

Most trajectories⁴ will not be affected by the proposed wind farm and are more than 2 nautical miles away.

Aircraft flying Centre Line approaches commencing at 10 nautical miles or less will be at least 3.4 nautical miles from the proposed wind farm with turbine 1 being closest.

Aircraft flying approaches 8 degrees right of the runway extended centre line will be at least 2.9 nautical miles from the proposed wind farm with the Met Mast being closest.

Aircraft flying approaches 8 degrees left of the runway extended centre line, commencing at 10 nautical miles or less, will be at least 3.3 nautical miles from the proposed wind farm with turbine 1 being closest.

Aircraft flying orbits of 6 nautical miles will be at least 7.2 nautical miles from the proposed wind farm with turbine 1 being closest.

Aircraft flying orbits of 25 nautical miles will be at least 9.3 nautical miles from the proposed wind farm with turbine 14 being closest.

1.6 Trajectories within 2 Nautical Miles

Three trajectories, however, pass less than 2 nautical miles from the proposed wind farm.

¹ In practice the arcs are centred on the Runway 24 threshold which is the zero reference point for the DME (Distance Measuring Equipment) associated with the Instrument Landing System

² Or the Met Mast if closer

³ 2 nautical miles = 3.7 kilometres

⁴ Plots showing these trajectories and the proposed wind turbines are available on request

1.7 Extended Runway Centre-Line

Aircraft flying the extended runway centre-line pass 0.623 nautical miles north of the proposed development with the Met Mast being closest. This is highlighted on the figure below:

Figure 2 Chart showing proximity of turbines to Extended Runway Centre-Line

1.8 Seventeen Nautical Mile Orbit

Aircraft flying a seventeen nautical mile orbit pass 1.32 nautical miles east of the proposed wind farm with turbine 14 being closest. Turbine 14 is highlighted on the figure below:

Figure 3 Chart showing proximity of turbines to 17 nautical mile Orbit

1.9 Eight Degree Left Slice Approach

Aircraft flying an eight degree left slice approach pass 0.563 miles south of the proposed wind farm with turbine 13 being closest. Turbine 13 is highlighted on the figure below:

Figure 4 Chart showing proximity of turbines to 8 degree left slice approach

1.10 Visual Flight Rules

Test flights are conducted under Visual Flight Rules (VFR) whereby pilots rely on their eyesight, rather than instruments⁵, to avoid collisions. When flying VFR pilots must ensure that they do not fly within 150 metres of any structure⁶.

⁵ When relying on instruments pilots fly in accordance with Instrument Flight Rules (IFR)

⁶ Irish Aviation Authority (Rules of the Air) Order, 2004 - Rule 3

Wind turbines are complex structures with large moving rotors. The clearance distances in the analysis above relate to the wind turbine bases rather than the entire wind turbine structure. It is necessary to consider the rotor radius of 68 metres when evaluating the calculated clearances⁷.

All trajectories are 0.563 nautical miles or more from the proposed wind turbine towers. One nautical mile is 1852 metres which means that all trajectories are 1,042⁸ metres from the proposed towers. Taking the rotor into account reduces the clearance distance between trajectory and turbine to 974⁹ metres.

1.11 Overall Impact

The horizontal clearance between aircraft flying the test trajectories and the turbines is more than six times the minimum horizontal clearance distance of 150 metres applicable for VFR flights in Ireland. The proposed turbines will therefore not affect aircraft flying ILS test trajectories and will therefore not have a significant impact on ILS test flights.

1.12 Mitigation

Whilst the proposed development will not impede aircraft flying the test trajectories it would nevertheless be prudent to ensure that pilots of test aircraft are fully aware of the presence of wind turbines, and any associated anemometry masts, before undertaking any test flights. The following mitigation measures are therefore recommended:

- All turbines and meteorological masts having a height of 100m or more are promulgated in the Irish Air Navigation Obstacle database;
- The extremities of the wind farm are lit;
- Meteorological masts are lit;
- Meteorological masts are painted red and white to aid visibility to pilots;
- Locations of meteorological masts having a height of less than 100m are promulgated to the pilots of test aircraft¹⁰;
- Test aircraft are fitted with Terrain Awareness and Warning System (TAWS);
- Test aircraft TAWS obstacle databases are regularly updated to ensure they contain the wind turbine and met mast locations prior to construction.

1.13 Conclusions and Recommendations

It is recommended that this report is shared with the Irish Aviation Authority.

⁷ Not necessary for the Met Mast - however

⁸ 0.563 x 1852 = 1,042

⁹ 1,042 - 68 = 974

¹⁰ This could be via the Aeronautical Information Publication or directly to pilots

LIST OF CONTENTS

Admin	istrati	on Page	.2
1	Key I	Findings	.3
	1.1	Background	. 3
	1.2	Shannon Airport	. 3
	1.3	Test Flights	. 4
	1.4	Assessment	. 4
	1.5	Trajectories beyond 2 Nautical Miles	. 4
	1.6	Trajectories within 2 Nautical Miles	. 4
	1.7	Extended Runway Centre-Line	. 5
	1.8	Seventeen Nautical Mile Orbit	. 6
	1.9	Eight Degree Left Slice Approach	. 7
	1.10	Visual Flight Rules	. 7
	1.11	Overall Impact	. 8
	1.12	Mitigation	. 8
	1.13	Conclusions and Recommendations	. 8
List of	Conte	ents	.9
List of	Figure	es1	10
List of	Table	s1	10
About	Pager	Power1	11
2	Intro	duction1	12
	2.1	Units of Measurement and Coordinate Systems	12
3	Wind	I Farm Information1	13
4	Shan	non Airport1	16
	4.1	Airport Information	16
	4.2	Runway Details	16
	4.3	Instrument Landing System	18

5 IAA Flight Check Schedule	1	9
-----------------------------	---	---

LIST OF FIGURES

Figure 1 Chart showing extended centre line and turbines	.3
Figure 2 Chart showing proximity of turbines to Extended Runway Centre-Line	.5
Figure 3 Chart showing proximity of turbines to 17 nautical mile Orbit	.6
Figure 4 Chart showing proximity of turbines to 8 degree left slice approach	.7
Figure 5 Maps showing proposed wind farm area	13
Figure 6 Chart showing individual turbine locations and numbers	14
Figure 7 Shannon Airport aerodrome chart	17

LIST OF TABLES

Table 1 Units of measurement and coordinate systems	12
Table 2 Wind Turbine Coordinates	15
Table 3 Instrument Landing System Parameters	18

ABOUT PAGER POWER

Pager Power is a dedicated consultancy company based in Suffolk, UK. The company specializes in assessing the impact of wind turbines on aviation and radar - having undertaken projects in 46 countries within Europe, Africa, America, Asia and Australasia.

The company comprises a team of experts to provide technical expertise and guidance on a range of planning issues for large and small developments.

Pager Power was established in 1997. Initially the company focus was on modelling the impact of wind turbines on radar systems. Over the years, the company has expanded into numerous fields including:

- Renewable energy projects.
- Building developments.
- Aviation and telecommunication systems.

Pager Power prides itself on providing comprehensive, understandable and accurate assessments of complex issues in line with national and international standards. This is underpinned by its custom software, longstanding relationships with stakeholders and active role in conferences and research efforts around the world.

Pager Power's assessments withstand legal scrutiny and the company can provide support for a project at any stage.

2 INTRODUCTION

The developer provided a layout of 19 wind turbines and a permanent meteorological mast for this assessment. Each turbine will have a maximum height of 168 metres above ground level with tip altitudes rising to approximately 1,700 feet above mean sea level. The proposal lies north east of Shannon and its centre is 28.8 kilometres (15.6 nautical miles) from Shannon Airport.

Wind turbines can impact aviation. This report identifies potential impacts on flights checking the airport's Instrument Landing System (ILS).

The Scope of this report reflects the IAA Engineering requirement to confirm that aircraft flying the test trajectories shown in the Appendix to this report will not be impeded by the proposed wind turbines.

2.1 Units of Measurement and Coordinate Systems

Units of measurement and coordinate systems normally used by the aviation and wind farm development industries differ. These differences are set out in the table below:

Parameter	Aviation	Onshore wind – Ireland	Conversion	
Distance	Nautical Mile (nm)	Kilometre (km)	1nm = 1.852km	
Height	Feet (ft)	Metres (m)	1ft = 0.3048m	
Location	WGS84 Lat/Long	ITM Eastings and Northings	Specialist tool required	

Table 1 Units of measurement and coordinate systems

3 WIND FARM INFORMATION

The proposed wind farm location is shown on the map below:

Figure 5 Maps showing proposed wind farm area

A 19 turbine wind farm layout has been assessed. This is shown on the chart on the following page.

Figure 6 Chart showing individual turbine locations and numbers

Turbine	ITM Easting	ITM Northing	
1	559385	675575	
2	559850	676030	
3	560484	675908	
4	561137	675897	
5	560394	676494	
6	561109	676437	
7	561881	676649	
8	562533	676815	
9	561098	676928	

The wind turbine coordinates are shown in the table below:

Turbine	ITM Easting	ITM Northing
10	561800	677115
11	562539	677308
12	563149	677146
13	563650	677042
14	563431	677641
15	562982	677858
16	562556	678103
17	561903	677741
18	561234	677472
19	561435	678011

Table 2 Wind Turbine Coordinates

The permanent meteorological mast has coordinates 561144E 677998N and has a height of 100 metres above ground level.

4 SHANNON AIRPORT

4.1 Airport Information

Shannon Airport is an Irish Aviation Authority (IAA) licensed aerodrome used predominately by private and commercial jet and fixed wing propeller aircraft. An ATC Tower is present on the airport.

4.2 Runway Details

Shannon Airport has one runway 06/24 measuring 3,199m by 45m. The runway is shown on the aerodrome chart in Figure 2^{11} on the following page.

¹¹ Source: Irish Aviation Authority IAP.

Figure 7 Shannon Airport aerodrome chart

4.3 Instrument Landing System

Specific parameters pertaining to the Runway 24 Instrument Landing System are shown in the Irish Aviation Authority Aeronautical Information Publication (AIP).

Parameter	Units	Value
Designated Operational Coverage	Nautical Miles	25
ILS Category	n/a	Cat II
Slope	Degrees	3
Threshold Elevation	Feet	15
Distance to ILS Point A	Nautical Miles	4
Distance to ILS Point B	Nautical Miles	0.57
Distance to ILS Point E	Nautical Miles	-1.35 ¹²

Table 3 Instrument Landing System Parameters

¹² This figure is negative because it refers to a point above the runway lying south west of the Runway 24 threshold

5 IAA FLIGHT CHECK SCHEDULE

ILS flight check profiles

4.2 Routine ILS Inspection Profile Requirements

Note: Where only 1 transmitter is checked on a routine, subsequently the other transmitter will be checked on the next routine.

Section	Profile	Description	Procedure	Notes	TX
9.1.1	01	Centreline Approach	10NM- Threshold 3000'	Course Structure, Alignment, GP Angle & RF measurement	1or2
9.1.3	04	Loc Orbit	6NM 1500' +35- 35°	Clearance	1or2
9.1.1	05	Centreline Approach Cat III only	2NM to Point E level 50ft down runway Centreline	Loc Course Structure, Alignment	1or2
9.1.1	12	Top Edge	1 NM required between 4NM- Point B 1800'	(75µA) 90Hz width	1or2
9.1.1	13	Bottom Edge	1 NM Required between 4NM- Point B 1500'	(75µA) 150Hz width	1or2
9.1.2	14	Slice for 3° GP	0.39 ≈12NM- Threshold 1000'	Clearance	1or2
9.1.2	15	Left Slice for 3° GP	10NM-0.450 1000'	Coverage 8' of Centreline Both transmitters if M Array	Alt 1or2
9.1.2	16	Right Slice for 3° GP	10NM-0.450 1000'	Coverage 8' of Centreline Both transmitters if M Array	Alt 1or2
	All	Ident Loc/DME	Co-Pilot listens/Fl	Check ident and synchronization	1or2
9.1.1	01	DME	4NM-1NM 1500'	DME Range Error	1or2

4.3 Annual ILS Inspection Profile Requirements

Section	Profile	Description	Procedure	Notes	TX
9.1.1	01	Centreline Approach	10NM- Threshold 3000'	RF, Course Structure, Alignment Angle GP & Loc	1&2
9.1.1	01	Centreline Approach	DOC or 10NM- Threshold on GP	Course Structure, Alignment Angle GP & Loc	1or2
9.1.1	01	Centreline Approach	10-4NM on GP & Loc	Power Ratio check (Two Freq Only) Course Line TX OFF	1or2

			C/L		
9.1.3	04	Loc Orbit	6NM 1500' +35-35°	Clearance	1&2
9.1.3	04	Loc Orbit	17NM 1500' +35- 35°	Clearance & Coverage	1or2
9.1.3	04	Loc Orbit	25NM 2000' +10- 10°	Clearance & Coverage	1or2
9.1.2	14	Loc Range Run	DOC or 25NM 2000'	Clearance	Alt 1or2
9.1.2	14	Slice for 3° GP	0.39 DOC or 12NM- Threshold 1000'	Course Only (Two Freq Only)	1012
9.1.1	05	Centreline Approach Cat III only	10NM to Point E level 50ft down runway Centreline	Course Structure, Alignment, GP Angle & RF measurement	182
9.1.1	12	Top Edge	4NM-Point B 1800'	(75µA) 90Hz width	1or
9.1 .1	13	Bottom Edge	4NM-Point B 1500'	(75µA) 150Hz width. See Note	1or
9.1.2	14	Slice for 3° GP	0.30 DOC or 12NM- Threshold 1000'	Course, Clearance & Coverage	182
9.1.2	14	Slice for 3° GP	0.30 DOC or 12NM- Threshold 1000'	Course Only (Two Freq Only)	1or:
9.1.2	15	Left Slice for 3° GP	10NM- 0.450 1000'	Coverage 8' of Centreline	Alt 1or
9.1.2	16	Right Slice for 3° GP	10NM- 0.458 1000'	Coverage 8° of Centreline	Alt 1or
9.1.1	11	Centreline Approach	4NM- Threshold 1500'	1- Low & Wide, then Low & High hold Angle Alarm 0'	
9.1.1	12	Top Edge	4NM-Point B 1800'	Low & Wide then Wide & Narrow Alarm	1or
9.1.1	13	Bottom Edge	4NM-Point B 1500'	Low & Wide, then Wide & Narrow Alarm	1or
9.1.2	14	Slice	DOC or 10-2NM @ 1000'	Low & Wide Alarm for Clearance	1or
9.1.2	14	Slice	DOC or 10NM- THD @ 1000'	Normal	1or

9.1.1	All 01	LOC/DME DME	4NM-1NM 1500'	DME Range Error	182 1or2
9.1.3	04 *	Loc Orbit	6NM 1500' +35-35°	Normal Check	1or2
9.1.3	04 *	Loc Orbit	6NM 1500' +35-35°	Narrow Alarm	1or2
9.1.3	04 *	Loc Orbit	6NM 1500' +35-35°	Wide Alarm	1or2
9.1 .1	01 *	Centreline Approach	4NM- Threshold 1500'	Fly Left & Right Alarms	1or2

4.4 Commissioning ILS Inspection Profile Requirements

Section	Profile	Description	Procedure	Notes	TX
9.1.1	01	Centreline Approach	DOC or 10NM- Threshold on GP	RF, Course Structure, Alignment Angle GP & Loc	1&2
9.1.1	01	Centreline Approach	2000' 25NM- Threshold	Course Structure, Alignment Angle GP & Loc	1or2
9.1.1	01	Centreline Approach	10-4NM on GP & Loc C/L	Power Ratio check (Two Freq Only) Course Line TX OFF	1or2
9.1.1	01*	Centreline Approach	4NM-Theshold on GP & Loc C/L	Polarisation Check Roll 20° Left & Right	1or2
9.1.1	02	Left Edge	4NM-Point B 1500'	(150µA) 90Hz course width	1&2
9.1.1	03	Right Edge	4NM-Point B 1500'	(150µA) 150Hz course width	182
9.1.3	04	Loc Orbit	6NM 1500' +35-35'	Clearance & Coverage	182
9.1.3	04	Loc Orbit	17NM 1500'	Clearance & Coverage	1or2

			+35-35		_
9.1.3	04	Loc Orbit	25NM 2000' +10-10'	Clearance & Coverage	1 or 2
9.1.2	14	Loc Range Run	DOC or 25NM 2000'	Clearance	Alt 1or2
9.1.1	05	Centreline Approach Cat III only	2NM to Point E level 50ft down runway Centreline	Loc Course Structure, Alignment	182
9.1.1	12	Top Edge	4NM-Point B 1800'	(75µA) 90Hz width	1&2
9.1.1	13	Bottom Edge	4NM-Point B 1500'	(75µA) 150Hz width	1&2
9.1.2	14	Slice for 3° GP	0.30 DOC or 12NM- Threshold 1000'	Course, Clearance & Coverage	1&2
9.1.2	14	Slice for 3* GP	0.30 DOC or 12NM- Threshold 1000'	Course Only (Two Freq Only)	1or2
9.1.2	15	Left Slice for 3° GP	16NM-0.450 1000'	Coverage 8° of Centreline	182
9.1.2	16	Right Slice for 3° GP	16NM-0.458 1000'	Coverage 8' of Centreline	1&2
9.1.1	11	Centreline Approach	4NM-Threshold 1500'	Low & Wide, then Low & High Angle Alarm	1or2
9.1.1	12	Top Edge	4NM-Point B 1800'	Low & Wide then Wide & Narrow Alarm	1or2
9.1.1	13	Bottom Edge	4NM-Point B 1500'	Low & Wide, then Wide & Narrow Alarm	1or2
9.1.2	14	Slice	DOC or 10- 2NM @ 1000'	Low & Wide Alarm for Clearance	1ora
9.1.2	14	Slice	DOC or 10NM- THD @ 1000'	Normal	1or2
9.1.1	01 *	Centreline Approach	4NM-Threshold 1500'	Fly Left & Right Alarms	1or2
9.1.3	04 *	Loc Orbit	6NM 1500' +35-35	Wide Alarm	1or
9.1.3	04 *	Loc Orbit	6NM 1500' +35-35°	Narrow Alarm	1012
9.1.3	04 *	Loc Orbit	6NM 1500' +35-35°	Normal Check	101
9.1.3	20	Orbit	5NM @1500' 360'	DME Coverage check 20° only on 2 nd TX	182
9.1.4		Promulgated procedure	Procedure- Threshold	Pilot comments	101
9.1.5		Promulgated procedure	Procedure distance spot checks for:-	IFP's, Missed Approach, Direct arrivals, Hold, En- Route	101

or Side	or Side Band Reference & M Array Glide Paths						
	Profile	Description	Procedure	Notes	TX		
9.1.2	14	Slice	DOC or 10-2NM @ 1000'	Dephase Upper Antenna with monitor in Alarm	1or2		
9.1.2	14	Slice	DOC or 10-2NM @ 1000'	Dephase Lower Antenna with Monitor in Alarm	1or2		
9.1 .2	14	Slice	DOC or 10-2NM @ 1000'	Advance Middle Antenna	1or2		
9.1.2	14	Slice	DOC or 10-2NM @ 1000'	Retard Middle Antenna	1or2		

Urban & Renewables

Pager Power Limited Stour Valley Business Centre Sudbury Suffolk CO10 7GB

Tel: +44 1787 319001 Email: info@pagerpower.com Web: www.pagerpower.com